A New Solution to the Matrix Equation X−AX¯B=C

نویسنده

  • Caiqin Song
چکیده

We investigate the matrix equation X - AXB = C. For convenience, the matrix equation X - AXB = C is named as Kalman-Yakubovich-conjugate matrix equation. The explicit solution is constructed when the above matrix equation has unique solution. And this solution is stated as a polynomial of coefficient matrices of the matrix equation. Moreover, the explicit solution is also expressed by the symmetric operator matrix, controllability matrix, and observability matrix. The proposed approach does not require the coefficient matrices to be in arbitrary canonical form. At the end of this paper, the numerical example is shown to illustrate the effectiveness of the proposed method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the solving matrix equations by using the spectral representation

‎The purpose of this paper is to solve two types of Lyapunov equations and quadratic matrix equations by using the spectral representation‎. ‎We focus on solving Lyapunov equations $AX+XA^*=C$ and $AX+XA^{T}=-bb^{T}$ for $A‎, ‎X in mathbb{C}^{n times n}$ and $b in mathbb{C} ^{n times s}$ with $s < n$‎, ‎which $X$ is unknown matrix‎. ‎Also‎, ‎we suggest the new method for solving quadratic matri...

متن کامل

Solving ‎F‎ully Fuzzy Dual Matrix System With Optimization Problem

In this paper, the fuzzy dual matrix system as AX + B = CX + D in which A, B, C, D, X are LR fuzzy matrices is studied. At first we solve 1-cut system in order to find the core of LR fuzzy solution; then to obtain the spreads of the LR fuzzy solution, we discuss in several cases. The spreads are obtained by using multiplication, quasi norm and minimization problem with a special objective funct...

متن کامل

New solution of fuzzy linear matrix equations

In this paper, a new method based on parametric form for approximate solu-tion of fuzzy linear matrix equations (FLMEs) of the form AX = B; where Ais a crisp matrix, B is a fuzzy number matrix and the unknown matrix X one,is presented. Then a numerical example is presented to illustrate the proposedmodel.

متن کامل

Solving LR fuzzy linear matrix equation†

In this paper, the fuzzy matrix equation $Awidetilde{X}B=widetilde{C}$ in which $A,B$ are $n times n$crisp matrices respectively and $widetilde{C}$ is an $n times n$ arbitrary LR fuzzy numbers matrix, is investigated. A new numerical procedure for calculating the fuzzy solution is designed and a sufficient condition for the existence of strong fuzzy solution is derived. Some examples are ...

متن کامل

Diagonal and Monomial Solutions of the Matrix Equation AXB=C

In this article, we consider the matrix equation $AXB=C$, where A, B, C are given matrices and give new necessary and sufficient conditions for the existence of the diagonal solutions and monomial solutions to this equation. We also present a general form of such solutions. Moreover, we consider the least squares problem $min_X |C-AXB |_F$ where $X$ is a diagonal or monomial matrix. The explici...

متن کامل

Global least squares solution of matrix equation $sum_{j=1}^s A_jX_jB_j = E$

In this paper, an iterative method is proposed for solving matrix equation $sum_{j=1}^s A_jX_jB_j = E$. This method is based on the global least squares (GL-LSQR) method for solving the linear system of equations with the multiple right hand sides. For applying the GL-LSQR algorithm to solve the above matrix equation, a new linear operator, its adjoint and a new inner product are dened. It is p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014